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The low-frequency hydromagnetic vibrations of a star are studied in the homogeneous model of a spherical
mass of incompressible inviscid fluid with a uniform magnetic field inside. Taking into consideration the fact
that the presence of the magnetic field inside liquid imparts to it properties of an elastic substance~allowing
propagation of the transverse magnetohydrodynamic wave!, it is argued that the eigenmodes of hydromagnetic
vibrations can be specified in the same manner as eigenmodes of elastodynamic vibrations. An explicit form is
obtained for the frequency of the poloidal and toroidal hydromagnetic vibrations. Numerical estimates are
presented of the frequency, computed in the homogeneous model with parameters typical of a neutron star.
@S1063-651X~96!09008-3#

PACS number~s!: 52.35.Bj, 04.40.2b

It has been known for a long time that the presence of
magnetic field inside a star produces the same effect as a
rigid-body rotation, that is, it tends to flatten the star by
contracting magnetic poles in the direction of the field—the
Chandrasekhar-Fermi effect@1#. For a homogeneous self-
gravitating liquid sphere of the radiusR and massM , with
the uniform magnetic field of intensityB inside, the elliptic-
ity of an oblate configuration is evaluated ase;Emag/Egr ,
whereEmag;B2R3 andEgr;GM2/R are the magnetic and
gravitational energy, respectively@2#. However, from this es-
timate it follows that thestatic effect of magnetic flattening
turns out to be negligibly small for the stars from the main
sequence, in whichB;102103 G @3,4#, as well as for
strongly magnetized degenerated compact objects like neu-
tron stars, in whichB;101121013 G @5#. This is one of the
main reasons why the investigations on stellar magnetism are
dominated by the search fordynamicalmanifestation of the
presence of magnetic fields in the interior of stars. In this
Brief Report one problem from this area is considered. Spe-
cifically, we focus on the eigenmodes of hydromagnetic vi-
brations of a star modeled by a uniformly magnetized homo-
geneous liquid sphere. While the model of uniformly
distributed matter does not reflect the realistic density profile
of the known stellar classes, the physical significance of ho-
mogeneous models is that they allow one to gain a clear
impression of stellar normal modes and to elucidate the con-
nection between different kinds of energy stored in the star
and its electromagnetic activity.

In the homogeneous model under consideration a mag-
netic star is thought of as a heavy spherical mass of nonvis-
cous incompressible liquid with the uniform magnetic field.
The electrical conductivity of stellar liquid is assumed to be
infinitely large. It is well established that the behavior of this
liquid is adequately described by equations of the magneto-
hydrodynamics@4,6#:
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Here r and V are the average density and mean velocity.
H stands for the intensity of magnetic field,m is the mag-
netic permeability (B5mH), andW is hydromagnetic pres-
sure (d/dt denotes the convective derivative!. The distin-
guishing feature of the dynamical behavior of a liquid
governed by the above equations is that it permits propaga-
tion of the transverse wave of Alfve´n ~along with the longi-
tudinal sound wave!. For incompressible fluid, the linearized
equations containing solution which represent the transmis-
sion of a hydromagnetic wave can be written as follows:
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wheredVk anddHk are the components of fluctuating veloc-
ity and intensity of the magnetic field. In deriving Eqs.~4!–
~6!, the trivial solution of the Laplace equationDdW50 for
fluctuations in hydromagnetic pressure has been used:
dW50 ~see, for details, Ref.@6#, Chap. IV, Sec. 39, pp. 155
and 156!. This is the case when gravitational vibrations are
not excited and the hydromagnetic wave is the only degree
of activity of the magnetized stellar matter governed by the
magnetofluid-dynamical equations~1!–~3!. Taking the time
and space dependence of the fluctuating variablesdVk and
dHk in the plane-wave formei (kr2vt), from Eqs.~4!–~6! it
can be immediately verified that the hydromagnetic wave
propagates with the phase velocity
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whereVA is the Alfvén velocity andu is the inclination of
the direction of wave propagation to the direction ofH. From
Eqs.~4!–~6! it follows that the energy balance of the hydro-
magnetic wave’s process is controlled by the equation@6#
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that is, the mean energy of the wave in the kinetic motion of
liquid equals mean energy of the wave in the magnetic field.
In magnetohydrodynamics~see, for instance,@4,6#! it is
stressed that the Alfve´n wave follows the magnetic lines of
force and the physical nature of this wave is analogous to the
transverse wave propagating along the elastic string~the
magnetic line of force behaves like a stretched string frozen
in liquid!. Thus, the presence of the homogeneous magnetic
field inside a liquid imparts to it the dynamical properties of
an elastic substance in the sense that propagation of the un-
dampedtransversevibrations is the feature inherent in elas-
tic solid.

Taking into consideration this similarity in the behavior of
magnetized liquid and elastic solid in bulk, it seems reason-
able to assume that undamped hydromagnetic vibrations of a
magnetized liquid drop are developed in a manner of eigen-
vibrations of an elastic globe. The eigenmodes of an elastic
star have recently been studied in Ref.@7#, associated with
the spheroidal~poloidal mode! and torsional~toroidal mode!
gravitation-elastic vibrations. Based on this assumption, it is
argued below that the low-frequency hydromagnetic eigen-
modes of a uniformly magnetized star can be specified as the
poloidal and toroidal ones~depending upon the vector or
pseudovector nature of excited solenoidal flow! in accord
with the elastodynamic classification of normal modes
adopted in Ref.@7#.

To calculate fundamental frequencies of the volume hy-
dromagnetic oscillations we take advantage of the general
variational principle@6#. The procedure is the following.
Scalar multiplication of Eq.~5! by dVi and integration over
the star volume~on the star surface it is assumed that
dHur5R50) leads to the integral equation of energy balance
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It is convenient to represent the small-amplitude deviations
in the velocity and magnetic intensity as follows:
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whereL is the multipole order of vibration. Inserting~10!
into ~6!, one finds
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In the spherical coordinates, Eq.~11! is equivalent to
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Substitution of~10! into Eq.~9! transforms this latter into an
equation for the Hamiltonian of normal vibrations
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where the inertiaML and the stiffnessKL are given by
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Thus, to compute the eigenfrequency,v25KL /ML , of hy-
dromagnetic vibrations, one has to specify the velocity field
of the oscillating solenoidal flow.

Poloidal hydromagnetic modes.Following Ref.@1# we re-
strict our consideration to the homogeneous model of a star
inside which the uniform magnetic field of intensityH is
directed along the polarz axis,

Hr5hH, Hu52~12h2!1/2H, Hf50, h5cosu.
~14!

It can be straightforwardly verified that one of the hydromag-
netic eigenmodes of the Hamiltonian~12! is associated with
excitation of the poloidal field of velocity,

dV5
AL

L11
rot rot@r r LPL~h!#ȧL~ t !
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HerePL(h) is the Legendre polynomial. The field~15! pro-
vides description of spheroidal vibrations of an elastic star
@7#. The components of instantaneous poloidal displacements
are written as follows@1#:
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The deviation in the intensity of the magnetic field is given
by @1#
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The mass parameter computed with the field~16! equals
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4prR5
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For the stiffness, we obtain

KL5mH2R3
L21

2L21
. ~19!

From ~19! it follows that a monopole mode cannot exist.
This is the consequence of incompressibility. The dipole po-
loidal field of velocity, as it follows from the Hamiltonian
~12!, contributes to the kinetic energy, whereas the potential
energy vanishes. The disturbance of the dipole poloidal ve-
locity can result in the center-of-mass motion, without
changing the intrinsic state of the star. The eigenfrequency of
the poloidal hydromagnetic vibrations is given by
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is the Alfvén frequency.
Toroidal hydromagnetic modes.The property of elasticity

of magnetized liquid allows one to consider shear hydromag-
netic oscillations. In the elastic sphere, these excitations are
described by the toroidal field of velocity@7#:
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is the frequency of local torsional oscillations. The compo-
nents of toroidal instantaneous displacements are written as
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and the corresponding fluctuations in the intensity of mag-
netic field are described by
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The mass parameter~torsional moment of inertia! computed
with the toroidal field~24! is given by
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For the stiffness, we obtain
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From ~27! it follows that the dipole toroidal mode is not an
eigenmode of the oscillator Hamiltonian~12!. Excitation of
the toroidal dipole displacements can lead to the rigid-body
rotation of the liquid sphere. The eigenfrequency of the tor-
oidal hydromagnetic vibrations is given by

v t
25VA

2~L221!
2L13
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, ~28!

whereVA is the Alfvén frequency defined by~21!.
Equations~20! and ~28! are the basic predictions of the

homogeneous model considered. From these equations it fol-
lows that the eigenfrequency of hydromagnetic modes is pro-
portional to the intensity of magnetic fieldH and depends
upon the star size as;1/R. The periodPhm of both the
poloidal and toroidal hydromagnetic vibrations monotoni-
cally decreases with increasing the multipole orderL as
Phm;1/L.

As a representative example we apply the above homoge-
neous model to a magnetic star with parameters typical of a
neutron star. Among known stellar classes, the neutron stars
possess the strongest concentration of magnetic energy. An
extensive discussion of the origin and evolution of the mag-
netic field in degenerated stars can be found in Ref.@5#. We
consider a model of a star with mass 1.0,M,1.4@M(# @the
average densityr;(223)rN , whererN52.831014 g/cm3

is the normal nuclear density#, radius 0.8,R,12 ~km!, and
with a magnetic field of intensityB;1013 G (m;1). From
Eqs. ~20! and ~28!, it follows that the Alfvén frequency is
given byVA;1021 Hz. Notice that with the above set of
parameters the frequency of hydromagnetic vibrations
vhm;AB2/rR2;102221021 Hz is much less than that of
gravitational nonradial vibrations. The latter, computed in
the homogeneous model of a self-gravitating liquid sphere, is
estimated to bevgr;AGr;1032104 Hz @8,9#. So the large
difference emphasizes the fact that the excitation of gravita-
tional vibrations in the superdense self-gravitating matter re-
quires much more energy than that required for hydromag-
netic vibrations.

It is remarkable that the computed period of hydromag-
netic vibrationsPhm52p/vhm;0.1210 s ~for L from the
interval 2,L,20) is of the same order as the period of
radio emission of pulsars~see the systematic data presented
in Fig. 5 of Ref.@5#!. While the model considered does not
disclose the mechanism governing the electromagnetic activ-
ity of a neutron star, the above correspondence of periods
may be interpreted in favor of the hypothesis, advanced long
ago in Ref.@10#, that the magnetic energy stored in the newly
born neutron star can be released by means of transformation
of the energy of hydromagnetic vibrations into the energy of
electromagnetic radiation.
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