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Low-frequency hydromagnetic modes of a uniformly magnetized liquid star
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The low-frequency hydromagnetic vibrations of a star are studied in the homogeneous model of a spherical
mass of incompressible inviscid fluid with a uniform magnetic field inside. Taking into consideration the fact
that the presence of the magnetic field inside liquid imparts to it properties of an elastic suljatinveiag
propagation of the transverse magnetohydrodynamic éhie argued that the eigenmodes of hydromagnetic
vibrations can be specified in the same manner as eigenmodes of elastodynamic vibrations. An explicit form is
obtained for the frequency of the poloidal and toroidal hydromagnetic vibrations. Numerical estimates are
presented of the frequency, computed in the homogeneous model with parameters typical of a neutron star.
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It has been known for a long time that the presence of dv M R
magnetic field inside a star produces the same effect as a ~ pgy =~ YW+ 7—(HV)H, W=P+o—H". (©)
rigid-body rotation, that is, it tends to flatten the star by
contracting magnetic poles in the direction of the field—the,
Chandrasekhar-Fermi effe¢l]. For a homogeneous self-
gravitating liquid sphere of the radil® and masdM, with
the uniform magnetic field of intensit$ inside, the elliptic-
ity of an oblate configuration is evaluated &s E,a¢/Eg,
where E;nag~B?R? and E,~GM?/R are the magnetic and
gravitational energy, respectivelg]. However, from this es-
timate it follows that thestatic effect of magnetic flattening

Here p andV are the average density and mean velocity.
H stands for the intensity of magnetic field, is the mag-
netic permeability B= uH), andW is hydromagnetic pres-
sure @/dt denotes the convective derivatjvelrhe distin-
guishing feature of the dynamical behavior of a liquid
governed by the above equations is that it permits propaga-
tion of the transverse wave of Alfwe(along with the longi-

. ._tudinal sound wave For incompressible fluid, the linearized
trns out to be negligibly small for the stars from the malnequations containing solution which represent the transmis-

sequence, in wh|ch~10— 10° G [3,4], as W?" as.for sion of a hydromagnetic wave can be written as follows:
strongly magnetized degenerated compact objects like neu-

tron stars, in whictB~10''— 10" G [5]. This is one of the

. : g : ddV, doH

main reasons why the investigations on stellar magnetism are =0, =0, 4

dominated by the search faiynamicalmanifestation of the OXi IXk

presence of magnetic fields in the interior of stars. In this

Brief Report one problem from this area is considered. Spe- a6V  pHy d6H;

cifically, we focus on the eigenmodes of hydromagnetic vi- Pt~ anm oxe )

brations of a star modeled by a uniformly magnetized homo-

geneous liquid sphere. While the model of uniformly 9SH. 98V

distributed matter does not reflect the realistic density profile TI - HkWI =0, (6)
k

of the known stellar classes, the physical significance of ho-
mogeneous models is that they allow one to gain a clear )
impression of stellar normal modes and to elucidate the conhereéV and 5H, are the components of fluctuating veloc-
nection between different kinds of energy stored in the stafty @nd intensity of the magnetic field. In deriving Eqé)—
and its electromagnetic activity. (6), the trivial solution of the Laplace equatidnsW=0 for

In the homogeneous model under consideration a madluctuations in hydromagnetic pressure has been used:
netic star is thought of as a heavy spherical mass of nonvis?W=0 (see, for details, Ref6], Chap. IV, Sec. 39, pp. 155
cous incompressible liquid with the uniform magnetic field.@nd 156. This is the case when gravitational vibrations are
The electrical conductivity of stellar liquid is assumed to benot excited and the hydromagnetic wave is the only degree
infinitely large. It is well established that the behavior of this Of activity of the magnetized stellar matter governed by the

liquid is adequately described by equations of the magnetgnagnetofiuid-dynamical equatioii$)—(3). Taking the time
hydrodynamicg4,6]: and space dependence of the fluctuating variablés and

5H, in the plane-wave forne' ~“Y, from Eqs.(4)—(6) it

L H can be immediately verified that the hydromagnetic wave
divH=0, —-=rot[VXH], (D propagates with the phase velocity
d—p+ divw=0 2 c?= w?/k?*=V4icos 6 v2=“—H2 (7)
dt P ’ A ’ A 47Tp ’
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whereV, is the Alfven velocity and# is the inclination of
the direction of wave propagation to the directiortbfFrom hy=|H

Egs.(4)—(6) it follows that the energy balance of the hydro-
magnetic wave’s process is controlled by the equdat&in

r

Tor ' r 96 rsind d¢

Jd H, o H 0 H,a,—H  a,ctgd
] P }a[ﬁor »a4Clg

d Hy o H J

Hga, +H sa,ctgo
"or r 90 rsind d¢ '

r

a¢+

1 M
=p(8V)?=——(6H)?, 8 - . : .
2’)( ) 877( ) ® Substitution of(10) into Eq.(9) transforms this latter into an

equation for the Hamiltonian of normal vibrations

that is, the mean energy of the wave in the kinetic motion of
liquid equals mean energy of the wave in the magnetic field. dH -0 H= 1 M, o2 1 2

- . o —=0, =-Mpraf+ KL af, (12
In magnetohydrodynamic¢see, for instance[4,6]) it is dt 2 2
stressed that the Alfvewave follows the magnetic lines of
force and the physical nature of this wave is analogous to th&here the inertiavi_ and the stiffnes&, are given by
transverse wave propagating along the elastic sttihg
_ma_gn(_etic line of force behaves like a stretched string froze_n ML:f paiLaiLdr, KL:iJ hiLhiLdT_ (13)
in liquid). Thus, the presence of the homogeneous magnetic v (Y]
field inside a liquid imparts to it the dynamical properties of
an elastic substance in the sense that propagation of the uhbus, to compute the eigenfrequenaey,=K /M, of hy-
dampedtransversevibrations is the feature inherent in elas- dromagnetic vibrations, one has to specify the velocity field
tic solid. of the oscillating solenoidal flow.

Taking into consideration this similarity in the behavior of ~ Poloidal hydromagnetic modeBollowing Ref.[1] we re-
magnetized liquid and elastic solid in bulk, it seems reasonstrict our consideration to the homogeneous model of a star
able to assume that undamped hydromagnetic vibrations ofiiside which the uniform magnetic field of intensity is
magnetized liquid drop are developed in a manner of eigendirected along the polar axis,
vibrations of an elastic globe. The eigenmodes of an elastic B B 2112 B B
star have recently been studied in Rgf|, associated with Hi=7H, Hy=—(1-7)""H, Hy=0, #5=cos.
the spheroidalpoloidal modé and torsionaltoroidal mode (14
gravitation-elastic vibrations. Based on this assump.tion., it iqt can be straightforwardly verified that one of the hydromag-
argued below that the low-frequency hydromagnetic €igenpeic eigenmodes of the Hamiltonidh?) is associated with
mod_es of a unlformly magnetized star can be specified as tr@(citation of the poloidal field of velocity,
poloidal and toroidal one¢depending upon the vector or
pseudovector nature of excited solenoidal flow accord
with the elastodynamic classification of normal modes Y
adopted in Ref[7].

To calculate fundamental frequencies of the volume hy- )
dromagnetic oscillations we take advantage of the general =Acgradr'P (7)]a.(t), A=rgrz (19
variational principle[6]. The procedure is the following.

Scalar multiplication of Eq(5) by 6V; and integration over HereP,(7) is the Legendre polynomial. The fie{d5) pro-

the star volume(on the star surface it is assumed thatyides description of spheroidal vibrations of an elastic star

6H|;—r=0) leads to the integral equation of energy balancg7]. The components of instantaneous poloidal displacements
are written as follow$1]:

AL

= gt ro{rr-Py(7)]ay(t)

7 [ 2V Mf&VH oM gm0, (@ L1

- T— 75— Mk T7=VU. r-—

v 2 amlv Pk arLzR_L—z P.(n),
It is convenient to represent the small-amplitude deviations L1
in the velocity and magnetic intensity as follows: ab=— r 1— 2)1/2‘9'3'-(77)

o=~ re2(1-7 P
sVi=af(Na(t), Hi=hi(Nac(t), (10 )
a,;=0. (16)

whereL is the multipole order of vibration. Inserting.0)

into (6), one finds The deviation in the intensity of the magnetic field is given

by [1]
L &aiL L-2
hr=Hi o (1 h=H(L—1) er=2PL2(7),
In the spherical coordinates, E@.1) is equivalent to ho rk—2 12 1 9PL-1(7)
[4 RL—Z( n ) (97’ ’
Hy o9 H, 4 Hya,+Hgay

h,=|H

"or or &0+ rsing d¢ ar r h,=0. 17
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The mass parameter computed with the figlf) equals For the stiffness, we obtain
M 47pR® 18)
LT L2l 1) L(L—1)(L+1)?
L(2L+1) K, = uH?R3 ( )( ) @7

(2L+1)(2L—-1)"
For the stiffness, we obtain

From (27) it follows that the dipole toroidal mode is not an
eigenmode of the oscillator Hamiltonid@?2). Excitation of
the toroidal dipole displacements can lead to the rigid-body

_ _rotation of the liquid sphere. The eigenfrequency of the tor-
From (19) it follows that a mOﬂOpOIe mode cannot exist. oidal hydromagnetic vibrations is given by

This is the consequence of incompressibility. The dipole po-

loidal field of velocity, as it follows from the Hamiltonian

(12), contributes to the kinetic energy, whereas the potential 2 22 2L+3

energy vanishes. The disturbance of the dipole poloidal ve- o =L =15 —7 (28)

locity can result in the center-of-mass motion, without

changing the intrinsic state of the star. The eigenfrequency of

the poloidal hydromagnetic vibrations is given by where(), is the Alfven frequency defined b{21).

Equations(20) and (28) are the basic predictions of the

homogeneous model considered. From these equations it fol-

L—1
KL=,uH2R3m. (19

w2=02L(L—1) 2L+1 (20) lows that the eigenfrequency of hydromagnetic modes is pro-
pTTA 2L-1° portional to the intensity of magnetic field and depends
upon the star size as-1/R. The periodPy,, of both the
where poloidal and toroidal hydromagnetic vibrations monotoni-
cally decreases with increasing the multipole orderas
V2 uH? Phm~1/L. _
Qi =5="_ (21) As a representative exa}mple we apply the above r_]omoge-
R®  4mpR neous model to a magnetic star with parameters typical of a

neutron star. Among known stellar classes, the neutron stars
possess the strongest concentration of magnetic energy. An
extensive discussion of the origin and evolution of the mag-
netic field in degenerated stars can be found in Rgf.We
'€onsider a model of a star with mass <01 < 14 Mg] [the
average densityp~ (2—3)py, Wherepy=2.8x 10'* g/cm?®
_ L . _ is the normal nuclear densityradius 0.8&<R<12 (km), and
V=AOLITPL (e (=[O xT], (29 with a magnetic field of intensit~ 10 G (x~1). From
where Egs. (20) and (28), it follows that the Alfven frequency is
given by Q,~10 ! Hz. Notice that with the above set of
parameters the frequency of hydromagnetic vibrations
wpm~ VB% pR?~10"2—10"1 Hz is much less than that of
_ ) o gravitational nonradial vibrations. The latter, computed in
is the frequency of local torsional oscillations. The compo-the homogeneous model of a self-gravitating liquid sphere, is
nents of toroidal instantaneous displacements are written agstimated to bevg~ JGp~10*—10* Hz [8,9]. So the large
L P () d.ifferen'ce Qmphasizes the fact that the exci'tati_on of gravita-
a,=0, a,=0, a,=— (11— ,72)1/2L_, tional vibrations in the superdense self-gravitating matter re-
R an quires much more energy than that required for hydromag-
(24 netic vibrations.
and the corresponding fluctuations in the intensity of mag- l_t |s_remarkable that the computed period of hydromag-
netic field are described by _netlc V|brat|onsthf 27 wpy~0.1-10 s (for L from 'Fhe
interval 2<L<20) is of the same order as the period of
rb-1t P _1(7) radio emission of pulsarsee the systematic data presented
hr=0, hy=0, hy=H(L+1)pr=1(1- e in Fig. 5 of Ref.[5]). While the model considered does not
(25) disclose the mechanism governing the electromagnetic activ-
ity of a neutron star, the above correspondence of periods
The mass parametéiorsional moment of inertlacomputed may be interpreted in favor of the hypothesis, advanced long

is the Alfven frequency.

Toroidal hydromagnetic mode$he property of elasticity
of magnetized liquid allows one to consider shear hydromag
netic oscillations. In the elastic sphere, these excitations al
described by the toroidal field of velocify]:

. 1
Qr,t)=A.gradr-P (n)]aL (), A=pr1 (23

an

with the toroidal field(24) is given by ago in Ref[10], that the magnetic energy stored in the newly
L(L+1) born neutron star can be released by means of transformation
+ B B B .
M| =4mpR5 (26) of the energy of hydromagnetic vibrations into the energy of

(2L+1)(2L+3)"° electromagnetic radiation.
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